Alicante. Miércoles, 16 de abril de 2025
La descarbonización de la industria química es uno de los mayores desafíos en la transición hacia una economía sostenible. Uno de los pilares para alcanzar este objetivo es la electrificación de procesos catalíticos, lo que permite sustituir el calor generado mediante combustibles fósiles por energía eléctrica procedente de fuentes renovables. Esta transformación no solo reduce drásticamente las emisiones de gases de efecto invernadero, sino que también abre nuevas oportunidades para diseñar procesos más eficientes y selectivos.
Investigadores de la Universidad de Alicante (UA) y de la Universidad Federal de Río de Janeiro (UFRJ) han logrado un avance significativo relacionado con la descarbonización de la industria química gracias al desarrollo de una nueva clase de materiales catalíticos híbridos en los que la fase de calentamiento está completamente integrada dentro del catalizador, en lugar de ser añadida como una mezcla externa.
Los resultados de este avance, recientemente publicados en la revista científica ACS Omega, representan un avance clave en la electrificación de procesos químicos industriales esenciales. La publicación ha sido firmada por Javier García Martínez, catedrático de Química Inorgánica de la UA, junto a Alexandre F. Young, Julia T. de Souza, Antonio M.L.M. Costa, Pedro N. Romano y João M.A.R. de Almeida, de la UFRJ.
La innovación se basa en la síntesis de zeolitas en presencia de nanopartículas de carburo de silicio, un material altamente eficiente en la absorción de microondas e inducción electromagnética. Como resultado, se obtiene un material compuesto en el que los cristales de zeolita encapsulan las nanopartículas de carburo de silicio, lo que garantiza un contacto íntimo entre la fase catalítica y la fase de calentamiento.
Este diseño estructural innovador permite una transferencia de calor más rápida y localizada, con lo que se mejora la eficiencia de las reacciones químicas. Los experimentos han demostrado que este material híbrido es capaz de alcanzar la misma conversión que los catalizadores convencionales, pero utiliza un 40 % menos de energía.